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The dynamics in a nonlinear Schrödinger chain in a homogeneous electric field is studied. We show that
discrete translational invariant integrability-breaking terms can freeze the Bloch nonlinear oscillations and
introduce new faster frequencies in their dynamics. These phenomena are studied by direct numerical integra-
tion and through an adiabatic approximation. The adiabatic approximation allows a description in terms of an
effective potential that greatly clarifies the phenomena.
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I. INTRODUCTION

The study of the generalized discrete nonlinear
Schrödinger(GDNLS) equation, introduced by Salerno[1]
as a model providing one-parametric transition between dis-
crete nonlinear Schrödinger(DNLS) equation and exactly
integrable Ablowitz-Ladik(AL ) model [2], is attracting in-
creasing interest, due to the relevance of lattice dynamics in
various fields of physics, as condensed matter, fiber optics
physics, molecular biology(see, e.g., Ref.[3] and references
therein) and recently the Bose-Einstein condensate(see, e.g.,
Ref. [4], and references therein). One of the most interesting
phenomena, which can be observed in the different discreti-
zations of the nonlinear Schrödinger equation is the so-called
Bloch oscillations, that appear when a linear force is applied
to a solitary wave solution. Such oscillations in the inte-
grable AL model with a linear force have been discovered in
Ref. [5], numerically found in the DNLS[6], and interpreted
as Bloch oscillations, using the analogy with the solid state
physics, in Ref.[7]. Later on, Bloch oscillations were studied
in the GDNLS equation[8] and in the presence of impurities
[9]. Bloch oscillations have been observed experimentally in
an array of waveguides[10], found also to exist in the case
of a dark soliton [11] and in a totally discretized(i.e.,
discrete-time discrete space) nonlinear Schrödinger equation
[12].

In the present article we report some peculiarities of the
Bloch oscillations of bright solitons in the GDNLS equation.
More specifically we show that the model preserves the
Bloch oscillations, the amplitude of which, however, dis-
plays in certain cases an abrupt change when the parameter
governing transition between AL and DNLS models is
changed.

Section II presents the model, i.e., the GDNLS equation
with discrete translational invariant integrability-breaking
terms in an external homogenous electric field, and the soli-
ton initial conditions considered for this model. In Sec. III
we present the adiabatic approximation, that will prove to be
very useful to understand the dynamics. It allows a descrip-
tion in terms of an effective potential. In Sec. IV we describe

the main ingredients of the dynamics: the Bloch oscillations
and the freezing of the Bloch oscillations, and provide an
explanation of this features in terms of the adiabatic effective
potential. Finally, in the conclusions(Sec. V), we summarize
the main results and discuss their relevance.

II. THE MODEL

The equation of motion for the system we are dealing
with reads

i
dcn

dt
+ s1 + ucnu2dscn+1 − cn−1d − 2xncn

− nscn+1 + cn−1 − 2cnducnu2 = 0, s1d

where n is the integrability-breaking parameter providing
one-parametric transition between the AL model[2] sn=0d
and the DNLS modelsn=1d, andx is a parameter defining
the strength of the linear force. In particular, atn=0 Eq. (1)
is integrable and has the exact bright soliton solution[7]

cnstd =

sinhs2wdexp5i3coshs2wdsins2xtd

x

− 2xnt46
cosh52wsn − j0d −

sinhs2wdfcoss2xtd − 1g

x
6

, s2d

wherew andj0 are constant parameters of the solutions(j0
can be interpreted as the initial position of the soliton center,
and 1/w as the soliton width).

Our purpose is to study how then term changes the soli-
ton evolution, i.e., we consider the evolution fornÞ0 of
initial conditions of the form

cns0d =
sinhs2wd

coshf2wsn − j0dg
. s3d
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III. ADIABATIC APPROXIMATION

Let us start with the analysis of the problem when it is
close to integrable, i.e., whenunu!1. We employ the pertur-
bation theory(in the presence of a linear force it was devel-
oped in Ref.[9]) and limit ourselves to the adiabatic approxi-
mation. This means that the termnscn+1+cn−1−2cnducnu2 is
considered as a perturbation of the AL model. As we have
previously seen, forn=0 there are exact solutions of the
form

cn = − i
sinhs2wde−2iusn−jd+iwe−is2n+1dxt

coshf2wsn − jdg
. s4d

In the adiabatic approximation we compute the time evolu-
tion of the parametersw, j, u, and w; while keeping the
functional form of Eq.(4) fixed. The equation of motion(1)
can be written as

i
dcn

dt
+ s1 + ucnu2dscn+1 − cn−1d − 2xncn = nscn+1 + cn−1

− 2cnducnu2 s5d

with the n term considered as a perturbation. This approach
gives the following evolution equations for the parameters:

du

dt
= Asw,jdcosf2sxt + udg + Bsw,jd, s6d

dj

dt
= Csw,jdsinf2sxt + udg, s7d

dw

dt
= Dsw,jdsinf2sxt + udg, s8d

where

Asw,jd =
n

2
sinh4s2wd 3 o

n=−`

`
sinhf2wsn − jdg

coshf2wsn + 1 −jdgcosh2f2wsn − jdgcoshf2wsn − 1 −jdg

3H 1

coshf2wsn + 1 −jdg
+

1

coshf2wsn − 1 −jdgJ , s9d

Bsw,jd = − n sinh4s2wd o
n=−`

`
sinhf2wsn − jdg

coshf2wsn + 1 −jdgcosh3f2wsn − jdgcoshf2wsn − 1 −jdg
, s10d

Csw,jd = −
sinhs2wd

w
S1 +

n

2
sinh3s2wd o

n=−`

`
sn − jd

coshf2wsn + 1 −jdgcoshf2wsn − jdgcoshf2wsn − 1 −jdg

3H 1

coshf2wsn + 1 −jdg
−

1

coshf2wsn − 1 −jdgJD , s11d

Dsw,jd = −
1

2
n sinh2s2wd o

n=−`

`
1

coshf2wsn + 1 −jdgcoshf2wsn − jdgcoshfn − 1 −jg

3H 1

coshf2wsn + 1 −jdg
−

1

coshf2wsn − 1 −jdgJ . s12d

From these expressions one can see that the coefficients
A, B, C, andD are periodic inj with period 1. The dynam-
ics of u, j, and w is decoupled from the evolution of the
phasew, and w is merely slaved to the dynamics of the
previous parameters. We have seen numerically that for a
wide range of parametersAsw,jd=0 andDsw,jd=0 (for j
integer of half integer it is easy to prove it analytically using

that the terms of the series are odd functions inn), therefore
the adiabatic equations of motion reduce to

du

dt
= Bsw,jd, s13d
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dj

dt
= Csw,jdsinf2sxt + udg, s14d

dw

dt
= 0. s15d

The corrections inB and C due to then term, B/n and fC
+sinhs2vd /vg /n [Eqs. (10), and (11)], are plotted in Fig. 1
for various values ofw. One can see thatB/n is j dependent
and takes greater values for narrower solitons. On the other
hand, the corrections inC coming from then term are greater
for wider solitons, and are nearlyj independent.

In the previous equations we can make the change of
variable a;xt+u, after this change it results a system of
autonomous differential equations fora andj

da

dt
= x + Bsjd, s16d

dj

dt
= Csjdsins2ad. s17d

The differential equation for the orbits is

da

dx
=

x + Bsjd
Csjdsins2ad

, s18d

that gives the equation for the orbitsa=asjd. Deriving with
respect to time Eq.(17) and substituting the equation for the
orbits a=asjd, we obtain a second order evolution equation
for j in terms of an effective forceFeff that only depends
on j

d2j

dt2
= Feffsjd, s19d

Feffsjd =
dCsjd

dj
Csjdsin2f2asjdg

+ 2Csjdfx + Bsjdgcosf2asjdg. s20d

This evolution equation(multiplying by dj /dt and integrat-
ing over time) leads to the energy conservation law

1

2
Sdj

dt
D2

+ Veffsjd = const, s21d

Veffsjd = −E
0

j

dj8Feffsj8d, s22d

whereVeff is the effective potential. Thus, the soliton in the
adiabatic approximation can be seen as a particle moving in
an effective potential. This interpretation is very useful to
understand the Bloch oscillations and its freezing.

IV. DYNAMICS IN THE PRESENCE OF THE n TERM

The evolution of soliton initial states of the form

cn =
sinhs2wd

coshf2wsn − j0dg
s23d

is characterized by two main phenomena: the Bloch oscilla-
tions and its freezing.

A. Bloch oscillations

The evolution of these states present dynamical localiza-
tion in the form of Bloch oscillations, see Fig. 2(as in the
n=0 case[6]). This phenomenon is a consequence of the
discreteness of the system.

The dynamical localization can be understood in the adia-
batic approximation[see Eq.(22)]. This approximation pre-
dicts that the soliton center position,j, feels a trapping ef-
fective potential(see Fig. 3), and the turning points of the
motion are for 2sxt+ud multiple of p [see Eq.(14)]. The
adiabatic approximation gives good results for the amplitude
and the period of the Bloch oscillations, and we also observe
that the soliton widths1/wd remains approximately constant
as the adiabatic approximation predicts.

Then term changes the period and amplitude of the Bloch
oscillations, and introduces new(fast) frequencies in the dy-
namics(Fig. 2). These differences can be seen as a conse-
quence of the changes in the adiabatic effective potential, see

FIG. 1. (a) B/n and (b) fC+sinhs2wd /wg /n as a function ofj
for various values ofw.
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Fig. 3. Forn.0 the lattice sites have an effective attractive
interaction for the soliton center; thus the effective potential
displays local minima near the lattice sites. Conversely for
n,0 the effective interaction is repulsive, and the local
minima are located in the intersite regions.

The evolution of the center of the soliton is correctly pre-
dicted by the adiabatic approximation[Eqs. (13)–(15)] at
early times. Later the effects of the radiative decay and the
change of shape of the soliton became important, and the
description of these effects falls beyond the scope of the
adiabatic approximation. These nonadiabatic effects become
more important for increasingunu. Another phenomenon that
cannot be studied within the adiabatic approximation is the
emergence of chaotic behavior[13], the adiabatic approxi-
mation do not account of this effect because it reduces the
computation of the evolution to the integration of the conser-
vation law in Eq.(21).

B. Freezing of the Bloch oscillations

The main new phenomenon reported in this article is the
freezing of the Bloch oscillations due to anhomogeneous
integrability breaking term(the n term). This freezing is a
trapping of the soliton in a lattice site(or in a intersite re-
gion), that happens in a region of the parameter space(Fig.

FIG. 2. (a) Bloch oscillations of a soliton[full evolution, Eq.
(1)] in a Schrödinger chain withn=−0.01. (b) Dynamics of the
center of the soliton[adiabatic approximation, Eqs.(6)–(8)] for n
=−0.01 (full line) and for n=0 (dashed line). Both figures with
initial conditions w0=1.5, j0=0, and u0=0, in external fieldx
=−0.3.

FIG. 3. Effective adiabatic potential for a soliton with initial
conditionsw0=1.5, j0=0, andu0=0 in a Schrödinger chain with an
external fieldx=−0.3 for various values ofn.

FIG. 4. (a) Narrow soliton(w0=1.5 andj0=10) and wide soliton
(w0=1.3 and j0=0) evolutions in a Schrödinger chain withn
=0.02 in an external fieldx=0.3, both withu0=0. (b) Effective
adiabatic potential for the narrow soliton.
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4). This is an intrinsic localization effect due to characteris-
tics of the lattice chain, not a localization induced by lattice
inhomogeneities[9].

The freezing of the Bloch oscillations can be easily ex-
plained in the adiabatic approximation, where it corresponds
to the center of the soliton variable being trapped in a local
minimum of the effective potential. See Fig. 4.

Therefore, in the casen.0, the freezing emerges for soli-
tons centered near lattice sites(and withdj /dt.0); while in
the casen,0, it emerges when the soliton center is near the
middle of an intersite region. In both cases the phenomena is
favored for narrow solitons(greater w), strong n terms
(greater n) and weaker external fields(smaller uxu). See
Fig. 5.

The parameter region predicted by the adiabatic approxi-
mation[Eqs.(6)–(8)] is in good agreement with the results of
the numerical evolution of the full equation of motion[Eq.
(1)]. However, the adiabatic approximation is not able to
describe the unfreezing at early times, that can only be ob-
served when the parameters are very close to the limit of the
freezing region(Fig. 6). The reason is that this unfreezing is
related to nonadiabatic effects(change of the soliton shape
and radiation).

V. CONCLUSIONS

These results show that inhomogeneity in the lattice isnot
required to freeze the Bloch oscillations, i.e., to trap the soli-

ton in a region with a size of the order of the intersite dis-
tance in the lattice. We show that the discrete translational
invariant integrability-breaking term that makes the transi-
tion between AL and DNLS models can freeze the nonlinear
Bloch oscillations, i.e., gives rise to an intrinsic localization.
This phenomenon can be understood as the trapping of the
soliton center position in a minimum of the effective poten-
tial that we obtain in the collective variable or adiabatic ap-
proximation. The integrability-breaking terms considered,
the n term, produces an effective attractive(for n.0) or
repulsive (for n,0) interaction with the lattice sites, that
gives rise to local minima in the effective potential where the
soliton can be trapped. Thisn term also has the effect of
changing the main frequency of the Bloch oscillation and
introducing faster new frequencies in the dynamics, that can
also be understood as a consequence of the change in the
effective potential. These phenomena show a richer dynam-
ics of the DNLS equation, increasing the interest and poten-
tial applications of this model, and they also suggest the
possibility of other new effects in the presence of time vary-
ing external forces[14].
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