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Freezing of nonlinear Bloch oscillations in the generalized discrete nonlinear
Schrddinger equation
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The dynamics in a nonlinear Schrddinger chain in a homogeneous electric field is studied. We show that
discrete translational invariant integrability-breaking terms can freeze the Bloch nonlinear oscillations and
introduce new faster frequencies in their dynamics. These phenomena are studied by direct numerical integra-
tion and through an adiabatic approximation. The adiabatic approximation allows a description in terms of an
effective potential that greatly clarifies the phenomena.
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[. INTRODUCTION the main ingredients of the dynamics: the Bloch oscillations
and the freezing of the Bloch oscillations, and provide an
The study of the generalized discrete nonlinearexplanation of this features in terms of the adiabatic effective
Schrodinger(GDNLS) equation, introduced by Salerri@]  potential. Finally, in the conclusioriSec. Vj, we summarize
as a model providing one-parametric transition between disthe main results and discuss their relevance.
crete nonlinear SchrodinggDNLS) equation and exactly
integrable Ablowitz-Ladik(AL) model[2], is attracting in-
creasing interest, due to the relevance of lattice dynamics in
various fields of physics, as condensed matter, fiber optics The equation of motion for the system we are dealing
physics, molecular biologgsee, e.g., Re{3] and references \yith reads
therein and recently the Bose-Einstein condengage, e.g.,

Il. THE MODEL

Ref. [4], and references thergirOne of the most interesting dys, )

phenomena, which can be observed in the different discreti- e (L +[4nl*) (W1 = Y1) — 2x0¢,

zations of the nonlinear Schroédinger equation is the so-called

Bloch oscillations, that appear when a linear force is applied = U(ner + Y1~ 240|402 = 0, 1)

to a solitary wave solution. Such oscillations in the inte-

grable AL model with a linear force have been discovered invhere v is the integrability-breaking parameter providing
Ref. [5], numerically found in the DNL$6], and interpreted ©One-parametric transition between the AL mo@#)l (»=0)

as Bloch oscillations, using the analogy with the solid stateéand the DNLS mode{r=1), and x is a parameter defining
physics, in Ref[7]. Later on, Bloch oscillations were studied the strength of the linear force. In particular,18t0 Eq. (1)

in the GDNLS equatiorfig] and in the presence of impurities is integrable and has the exact bright soliton solufioh

[9]. Bloch oscillations have been observed experimentally in N

an array of waveguidefl0], found also to exist in the case cosh2w)sin(2xt)

of a dark soliton[11] and in a totally discretizedi.e., sinh(2w)exp i| —————— = 2ynt
discrete-time discrete spgoeonlinear Schrodinger equation X

[12]. (1) = - (2

In the present article we report some peculiarities of the
Bloch oscillations of bright solitons in the GDNLS equation.
More specifically we show that the model preserves the cosh 2w(n = &) -
Bloch oscillations, the amplitude of which, however, dis- X
plays in certain cases an abrupt change when the parameter )
governing transition between AL and DNLS models isWherew and{, are constant parameters of the solutiogs
changed. can be interpreted as the initial position of the soliton center,
Section Il presents the model, i.e., the GDNLS equatior®nd 14v as the soliton width _
with discrete translational invariant integrability-breaking ~Our purpose is to study how theterm changes the soli-
terms in an external homogenous electric field, and the soliton evolution, i.e., we consider the evolution for=0 of
ton initial conditions considered for this model. In Sec. 1l initial conditions of the form
we present the adiabatic approximation, that will prove to be .
very useful to understand the dynamics. It allows a descrip- 4 (0) = sinh(2w) . 3
tion in terms of an effective potential. In Sec. IV we describe " cosh2w(n - &))]

sinh(2w)[coq2xt) — 1]

J
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11l. ADIABATIC APPROXIMATION dy, )
. . L i——+(1+ |¢n| ) (W1 = ¥n-1) = 2X00 = V(1 + I
Let us start with the analysis of the problem when it is dt
close to integrable, i.e., when|<1. We employ the pertur- — 202 (5)
bation theory(in the presence of a linear force it was devel-
oped in Ref[9]) and limit ourselves to the adiabatic approxi- With the » term considered as a perturbation. This approach
mation. This means that the term,,,+ ¢n_1_2¢n)|¢n|2 is gives the following evolution equations for the parameters:

considered as a perturbation of the AL model. As we have

previously seen, fon=0 there are exact solutions of the d—sz(w,g)cos{z(XH 0)]+B(w,&), (6)
form
) Sinl,(zw)e—Zi 0(n—§)+i<pe—i(2n+1))(t dg )
=— . 4 — =C(w,é)sin2(xt + 6)], 7
N oW o] 4 5 = Cw.Hsin2(xt + )] 7)
In the adiabatic approximation we compute the time evolu- dw _
tion of the parametersv, & 6, and ¢; while keeping the E=D(W,§)Slf{2()(t+ 0)], (8)
functional form of Eq.(4) fixed. The equation of motiofil)
can be written as where

[

sinf2w(n - ¢)]
e, cosli2w(n + 1 - &)JcosH[2w(n - &)Jcosf2w(n - 1 - §)]

Aw,§) = gsinh“(ZW) X

1 1
X{ cosh2w(n+ 1 -¢)] " cos2w(n-1-¢)] } ' ©
o ” sinH2w(n - &)]
Bw,§) =-v S'nﬁl(zw)n;_m costi2w(n+ 1 - §Jcosh[2w(n - &)]costi2w(n - 1 - §)]’ 1o
__sinh2w)( . v . (n-9
Cw, §) = (1 * 2smhg(2W)n:E_w coshi2w(n+ 1 - ¢)Jcosh2w(n - &)Jcosh2w(n -1 - §)]
x{ = - L }) , (11)
cosh2w(n+1-¢)] cosh2w(n-1-§)]
D( )——1 sink?(2 )% !
W, &) == 5 v sinfr(2w £ cosli2w(n+ 1 - &]cosi2w(n - &)]coshin - 1 - £]
x{ 1 - L } (12
cosh2w(n+1-§)] cosh2w(n—-1-§)]

From these expressions one can see that the coefficientsat the terms of the series are odd functions)intherefore
A, B, C, andD are periodic in¢ with period 1. The dynam- the adiabatic equations of motion reduce to

ics of 0, & andw is decoupled from the evolution of the

phase¢, and ¢ is merely slaved to the dynamics of the

previous parameters. We have seen numerically that for a

wide range of parametes(w,£) =0 andD(w, &) =0 (for & d_@: B(w, &) (13)
integer of half integer it is easy to prove it analytically using dt e
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40 - - - -
— w=15 d_a:LB(g), (18)
30} - -w=10 dy C(§sin(2a)
- w=05
201 that gives the equation for the orbitis= a(£). Deriving with
10l respect to time Eq.17) and substituting the equation for the
- orbits a=a(¢), we obtain a second order evolution equation
A N for £ in terms of an effective forcé& . that only depends
-10¢ oné¢
-20 d’¢
— =F , 19
30 dt2 eﬁ(g) ( )
% 02 04 06 08 1 dc(®)
@ g Fert(§) = d—gc(f)Sinz[Za(S)]
35
_________________________________ +2C(HLx +B(9]cod2a(§)]. (20)
sor This evolution equatioimultiplying by d¢/dt and integrat-
22 ing over timg leads to the energy conservation law
3 R 2
= ol 1/d
g —(—§> + Ver(€) = const, (22)
=4 2\ dt
< 15} — w=15 4
2 - -w=1.0
© ol ‘— w=05 | 4
Vei(§) == f d&'Fer(€'), (22
st 0
0 . . . . whereVg is the effective potential. Thus, the soliton in the
0 0.2 0.4 0.6 0.8 1 adiabatic approximation can be seen as a particle moving in
(b) £ an effective potential. This interpretation is very useful to

understand the Bloch oscillations and its freezing.
FIG. 1. (a) B/v and (b) [C+sinh(2w)/w]/v as a function of¢
for various values ofv.
IV. DYNAMICS IN THE PRESENCE OF THE » TERM

d . N
d_éz Cw, Osin2(xt + 0)], (14) The evolution of soliton initial states of the form
t B sinh(2w) 23
" cosh2w(n - &))]
d—Wz 0. (15) is characterized by two main phenomena: the Bloch oscilla-
dt tions and its freezing.

The corrections iB and C due to thev term, B/v and|[C
+sinh(2w)/ w]/ v [Egs. (10), and(11)], are plotted in Fig. 1
for various values ofv. One can see th&/ v is & dependent The evolution of these states present dynamical localiza-
and takes greater values for narrower solitons. On the othdfon in the form of Bloch oscillations, see Fig.(as in the
hand, the corrections i@ coming from thev term are greater »=0 case[6]). This phenomenon is a consequence of the
for wider solitons, and are nearfyindependent. discreteness of the system. _ _
In the previous equations we can make the change of The dynamical localization can be understood in the adia-
variable a= yt+6, after this change it results a system of batic approximatiorjsee Eq(22)]. This approximation pre-

autonomous differential equations farand & dicts that the soliton center positiog, feels a trapping ef-
fective potential(see Fig. 3, and the turning points of the

da motion are for 2yt+6) multiple of 7= [see Eq.(14)]. The

— =y +B(9), (16)  adiabatic approximation gives good results for the amplitude

dt and the period of the Bloch oscillations, and we also observe
that the soliton widtH1/w) remains approximately constant
as the adiabatic approximation predicts.

A. Bloch oscillations

d—g = C(&)sin(2a). (17) The v term changes the period and amplitude of the Bloch
dt oscillations, and introduces neifast) frequencies in the dy-
namics(Fig. 2). These differences can be seen as a conse-
The differential equation for the orbits is quence of the changes in the adiabatic effective potential, see
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soliton center

(b) t

FIG. 2. (a) Bloch oscillations of a solitorifull evolution, Eq.
(1)] in a Schradinger chain withh=-0.01. (b) Dynamics of the
center of the solitorjadiabatic approximation, Eq§6)—8)] for v
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FIG. 4. (a) Narrow soliton(wg=1.5 andé;=10) and wide soliton

=-0.01 (full line) and for v=0 (dashed ling Both figures with

initial conditions wp=1.5, £=0, and 6,=0, in external fieldy

=-0.3.

(Wg=1.3 and &=0) evolutions in a Schrédinger chain with
=0.02 in an external fielgy=0.3, both with §,=0. (b) Effective
adiabatic potential for the narrow soliton.
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FIG. 3. Effective adiabatic potential for a soliton with initial
conditionswy=1.5, £=0, andfy=0 in a Schrddinger chain with an

external fieldy=-0.3 for various values of.
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Fig. 3. Forv>0 the lattice sites have an effective attractive
interaction for the soliton center; thus the effective potential
displays local minima near the lattice sites. Conversely for
v<0 the effective interaction is repulsive, and the local
minima are located in the intersite regions.

The evolution of the center of the soliton is correctly pre-
dicted by the adiabatic approximatidikgs. (13)—(15)] at
early times. Later the effects of the radiative decay and the
change of shape of the soliton became important, and the
description of these effects falls beyond the scope of the
adiabatic approximation. These nonadiabatic effects become
more important for increasing|. Another phenomenon that
cannot be studied within the adiabatic approximation is the
emergence of chaotic behavifit3], the adiabatic approxi-
mation do not account of this effect because it reduces the
computation of the evolution to the integration of the conser-
vation law in Eq.(21).

B. Freezing of the Bloch oscillations

The main new phenomenon reported in this article is the
freezing of the Bloch oscillations due to domogeneous
integrability breaking termthe v term). This freezing is a
trapping of the soliton in a lattice sit@r in a intersite re-
gion), that happens in a region of the parameter sg&ag
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0.01 0.02 0.03 0.04 0.05
v FIG. 6. Dynamical defrosting due to nonadiabatic eff¢raslia-
tion and change of soliton shgpef a soliton with initial conditions

FIG. 5. Bloch oscillations are frozen in the regions above theg|gse to the frozen-unfrozen limit in parameter spaggs 1.2633,
curves for values of the external field smaller than those indicateq =0, and 4,=0 in a Schrédinger chain with an external fied

in the curvegtaking for the other parametefg=0 andé,=0). Full  —g 3 for ,=0.025.
lines: computation with the complete equations of motion. Dashed

lines: computation with the adiabatic approximation. . . . . . . .
P PP ton in a region with a size of the order of the intersite dis-

. . L . tance in the lattice. We show that the discrete translational
4). This is an intrinsic localization effect due to characteris-jnyariant integrability-breaking term that makes the transi-
tics of the IaFt_lce chain, not a localization induced by latticeijon petween AL and DNLS models can freeze the nonlinear
inhomogeneitie$9)]. Bloch oscillations, i.e., gives rise to an intrinsic localization.

The freezing of the Bloch oscillations can be easily ex-rpis hhenomenon can be understood as the trapping of the
plained in the adiabatic approximation, where it corresponds,jiton center position in a minimum of the effective poten-

to the center of the soliton variable being trapped in a locajjy| that we obtain in the collective variable or adiabatic ap-

minimum of the effective potential. See Fig. 4. _ proximation. The integrability-breaking terms considered,
Therefore, in the case>0, the freezing emerges for soli- the 4, term, produces an effective attractivier v>0) or
tons centered near lattice sit@d withd¢/dt=0); while in o sive (for »<0) interaction with the lattice sites, that

the casev<0, it emerges when the soliton center is near theyiyes rise to local minima in the effective potential where the
middle of an intersite region. In both cases the phenomena i&;iton can be trapped. This term also has the effect of
favored for narrow solitonggreaterw), strong » t€MS  changing the main frequency of the Bloch oscillation and
(greater ») and weaker external fieldssmaller [x|). See jniroducing faster new frequencies in the dynamics, that can
Fig. 5. ) ) i . also be understood as a consequence of the change in the
The parameter region predicted by the adiabatic approXigffective potential. These phenomena show a richer dynam-
mation[Egs.(6)«8)] is in good agreement with the results of joq of the DNLS equation, increasing the interest and poten-

the numerical evolution of the full equation of motigBqg. 5 applications of this model, and they also suggest the

(D)]. However, the adiabatic approximation is not able t0p,ssibility of other new effects in the presence of time vary-
describe the unfreezing at early times, that can only be oqhg external forceg14].

served when the parameters are very close to the limit of the
freezing regionFig. 6). The reason is that this unfreezing is ACKNOWLEDGMENTS
related to nonadiabatic effecshange of the soliton shape
and radiatioin We thank Vladimir Konotop and Angel Sanchez for their
comments. We acknowledge support from the European
V. CONCLUSIONS Commission, Un'iversidad Complutense de Madi®pain
and MCyT (Spain through Grants No. HPRN-CT-2000-
These results show that inhomogeneity in the latticgois 00158, PR1/03-11595, and BFM2003-02547/FISI,
required to freeze the Bloch oscillations, i.e., to trap the solitespectively.
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